Some Symmetric Laguerre-Hahn linear Functionals of Class Six at Most

Zaatra Mohamed


We show that if v is a symmetric regular Laguerre-Hahn linear form (functional), then the linear
functional u dened by u = 􀀀x􀀀4v + 1
0 +0 is also regular and symmetric Laguerre-Hahn linear functional for
every complex except for a discrete set of numbers depending on v. We explicitly give the coecients of the
second-order recurrence relation of the orthogonal sequence associated with u and the class of the linear functional
u knowing that of v. Finally, we apply the above results to some examples.


Orthogonal polynomials, Laguerre-Hahn linear functionals.


. Alaya and P. Maroni, Semi-classical and Laguerre-Hahn forms dened by pseudo-functions, Methods

Appl. Anal. 3 (1) (1996), 12-30.

. Alaya and P. Maroni, Symmetric Laguerre-Hahn forms of class s = 1, Integral Transforms Spec.

Funct. 4 (1996), 301-320.

D. Beghdadi and P. Maroni, On the inverse problem of the product of a form by a polynomial, J.

Comput. Appl. Math. 88 (1997), 401-417.

A. Branquinho and F. Marcellan, Generating new classes of orthogonal polynomials, Int. J. Math.

and Math. Sci. 19(4) (1996), 643-656.

T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.

T. S. Chihara, On co-recursive orthogonal polynomials, Proceedings of the American Mathematical

Society 8 (1957), no. 5, 899-905.

E.B. Christoel, U ber die Gaussische Quadratur und eine Verallgemeinerung derselben, J. fur Reine

und Angew. Math. 55 (1858), 61-82.

J. Dini and P. Maroni, Sur la multiplication d'une forme semi-classique par un polyn^ome, Publ. Sem.

Math. Univ. d'Antananarivo, Vol. 3 (1989), 76-89.

J. Dini, Sur les formes lineaires et les polyn^omes orthogonaux de Laguerre-Hahn, These, Universite

Pierre et Marie Curie, Paris, 1988.

J. H. Lee and K. H. Kwon, Division problem of moment functionals, Rocky Mountain J. Math., 32

(2) (2002), 739-758.

F. Marcellan and E. Prianes, Perturbations of Laguerre-Hahn linear functionals, Journal of Computational

and Applied Mathematics 105 (1999), no. 1-2, 109-128.

P. Maroni and I. Nicolau, On the inverse problem of the product of a form by a monomial: the case

n=4. Part I, Integral Transforms Spec. Funct., 21 (1) (2010), 35-56.

P. Maroni and I. Nicolau, On the inverse problem of the product of a form by a polynomial: The

cubic case. Appl. Numer. Math., 45 (2003), 419-451.

P. Maroni, On a regular form dened by a pseudo-function. Numer. Algorithms 11, (1996), 243-254.

P. Maroni, Une theorie algebrique des polyn^omes orthogonaux. Application aux polyn^omes orthogonaux

semi-classiques, in: Orthogonal Polynomials and their applications, (C. Brezinski et al Editors.)

IMACS, Ann. Comput. Appl. Math. 9 ( Baltzer, Basel, 1991), 95-130.

P. Maroni, Sur la decomposition quadratique d'une suite de polyno^omes orthogonaux. I, Rivista di

Mathematica Hungarica 21 (1990), no. 3, 223-248.

P. Maroni, Sur la suite de polyn^omes orthogonaux associee a la forme u = c+ (x 􀀀 c)􀀀1 L: Period.

Math. Hungar. 21 (3) (1990), 223-248.


  • There are currently no refbacks.

free counters